skip to main content


Search for: All records

Creators/Authors contains: "Qiu, Jingjing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 8, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. Plasmon-mediated electrocatalysis based on plasmonic gold nanoparticles (Au NPs) has emerged as a promising approach to facilitate electrochemical reactions with the introduction of light to excite the plasmonic electrodes. We have investigated the electrochemical oxidation of 4-(hydroxymethyl)benzoic acid (4-HMBA) on gold (Au), nickel (Ni), and platinum (Pt) metal working electrodes in alkaline electrolytes. Au has the lowest onset potential for catalyzing the electrooxidation of 4-HMBA among the three metals in base, whereas Pt does not catalyze the electrooxidation of 4-HMBA under alkaline conditions, although it is conventionally a good electrocatalyst for alcohol oxidation. Both 4-carboxybenzaldehyde and terephthalic acid are detected as the products of electrochemical oxidation of 4-HMBA on the Au working electrode by high-performance liquid chromatography . The electrodeposited Au NPs on indium tin oxide (ITO)-coated glass is further utilized as the working electrode for the 4-HMBA electrooxidation. With its broad absorption in the visible and near-infrared range, we show that the Au NPs on the ITO electrode could enhance the electrochemical oxidation of 4-HMBA under green and red LED light illuminations (505 and 625 nm). A possible reaction mechanism is proposed for the electrochemical oxidation of 4-HMBA on Au working electrodes in an alkaline electrolyte. 
    more » « less